animateMainmenucolor
 
Малогабаритные буровые установки
 
 
Вездеходы Арго
 
 
Каталог предприятий
 
 
Сделай заказ
 
 
Наличие на складе
 
 
Буровые установки
 
 
Буровое оборудование
 
 
Буровой инструмент
 
 
Запчасти к буровым установкам
 
 
Технология бурения скважин
 
 
Расчеты в бурении
 
 
Горные породы
 
 
Природные ресурсы
 
 
Техника для содержания скважин
 
 
Бурильно-крановые машины
 
 
Буровые вышки
 
 
Насосное оборудование
 
 
Оборудование водопонижения
 
 
Нефтегазопромысловое оборудование
 
 
Нефтегазопромысловая спецтехника
 
 
Горнодобывающее оборудование
 
 
Геофизическое оборудование
 
 
Геологоразведка
 
 
Добыча золота
 
 
Словарь
 
 
Реклама
 
 
Инженерно-геологические изыскания
 
 
Инженерно-геодезические изыскания
 
 
Учебные заведения
 
 
Дополнительное оборудование
 
 
Фотографии
 
 
Заказать буровое оборудование, станок СКБ 4
 
 
Карта сайта
 
 
{продукция}
{компания}

Скважинный струйный насос

Схема работы и принцип действия струйного насоса

В последние десятилетия ведутся активные поиски новых способов добычи нефти, особенно в области эксплуатации наклонных скважин. При использовании бесштанговых гидроприводных струйных насосных установок вместо УСШН в скважинах со значительной кривизной ствола энергетические затраты существенно снижаются, а межремонтный период (МРП) скважинного оборудования увеличивается. Компактность, высокие монтажеспособность, эффективность и степень унификации узлов позволяют применять гидроприводные насосные установки при эксплуатации кустовых скважин в труднодоступных районах Сибири и на морских месторождениях.

Изменение условий эксплуатации многих нефтяных месторождений, связанное с увеличением числа объектов разработки в труднодоступных северных районах и на континентальном шельфе, вызвало возрождение интереса к струйным насосным установкам.

Струйные насосы являются разновидностью гидроприводных насосов, и они обладают всеми достоинствами этого вида оборудования.

Благодаря своим конструктивным особенностям струйные аппараты отличаются высокой надежностью и эффективностъю, особенно в осложненных условиях эксплуатации, например, при добыче пластовой жидкости со значительным содержанием механических примесей и коррозионно-активных веществ из наклонно направленных скважин.

К преимуществам струйных насосов относят их малые габариты, большую пропускную способность и возможность стабильно отбирать пластовую жидкость с высоким содержанием свободного газа. Кроме того, проста конструкция установок, отсутствуют движущиеся детали, возможно исполнение струйного насоса в виде свободного, сбрасываемого агрегата.

В струйном насосе или инжекторе (рис. 4.78) поток откачиваемой жидкости перемещается от забоя скважины до устья скважины за счет получения энергии от потока рабочей жидкости, подаваемого поверхностным силовым насосом с устья скважины.

Рис. 4.78. Схема струйного насоса (а) и движение жидкостей в нем (б): 1 — подвод откачиваемой жидкости; 2 — подвод рабочей жидкости; 3 — входное  кольцевое сопло; 4 — рабочее сопло; 5 — камера смешения; 6 — диффузор;  I — невозмущенная откачиваемая жидкость; II — пограничный слой; III — невозмущенная рабочая жидкость (ядро)


Нагнетание скважинной жидкости осуществляется благодаря явлению эжекции в рабочей камере, т.е. смешению скважинной жидкости с рабочим потоком жидкости, обладающим большой энергией, см. рис. 4.78.

Режим работы струйного насоса характеризуется следующими параметрами: рабочий напор НР, затрачиваемый в насосе и равный разности напоров рабочего потока на входе в насос (сечение В-В) и на выходе из него (сечение С-С), полезный напор НП, создаваемый насосом и равный разности напоров подаваемой жидкости за насосом (сечение С-С) и перед ним (сечение А-А); расход рабочей жидкости Q1; полезная подача Q0. КПД струйного насоса равен отношению полезной мощности к затраченной и может достигать величины КПД = 0,2...0,35:

Такое значение КПД струйных насосов обусловлено большими потерями энергии, сопровождающими рабочий процесс: в камере смешения (на вихреобразование и гидравлическое трение жидкости о стенки камеры); в элементах насоса, подводящих и отводящих жидкость (в рабочем и кольцевом сопле и диффузоре).

Струйный насос работает следующим образом. При истечении рабочей жидкости со скоростью V1, из сопла в затопленное пространство сразу за передним срезом сопла на поверхности струи возникает область смешения. Быстрые частицы проникают в окружающий медленный поток невозмущенной жидкости, подсасываемый через кольцевой проход в камеру со скоростью Vо и передают ей энергию. Этот процесс, основанный на интенсивном вихреобразовании, происходит в непрерывно утолщающемся по длине струйном пограничном слое. Вместе с тем внутренняя область рабочей струи, а именно ее ядро и внешняя область невозмущенной подсасываемой жидкости - постоянно уменьшаются и на расстоянии L от рабочего сопла потоки рабочей и откачиваемой жидкости уже полностью перемешаны. На дальнейшем участке камеры смешения происходит только выравнивание профиля скоростей потока жидкости. Чаще всего в струйных насосах применяют цилиндрические камеры смешения, технологические простые в изготовлении и обеспечивающие относительно высокий КПД.

Для преобразования достаточно высокой скорости потока в камере смешения в давление поток направляется в диффузор.

Технические характеристики скважинного струйного насоса

Струйный насос имеет два основных элемента: сопло и диффузор, состоящий иногда из нескольких деталей (см. рис. 4.79). К соплу подается рабочая жидкость под большим давлением. Она выходит из сопла в камеру смешения со значительной кинетической энергией. Откачиваемая жидкость поступает в ту же камеру и увлекается струей рабочей жидкости в горловину диффузора.

Торговый дом АУМАС