Схема работы и принцип действия струйного насоса
В последние десятилетия ведутся активные поиски новых способов добычи нефти, особенно в области эксплуатации наклонных скважин. При использовании бесштанговых гидроприводных струйных насосных установок вместо УСШН в скважинах со значительной кривизной ствола энергетические затраты существенно снижаются, а межремонтный период (МРП) скважинного оборудования увеличивается. Компактность, высокие монтажеспособность, эффективность и степень унификации узлов позволяют применять гидроприводные насосные установки при эксплуатации кустовых скважин в труднодоступных районах Сибири и на морских месторождениях.
Изменение условий эксплуатации многих нефтяных месторождений, связанное с увеличением числа объектов разработки в труднодоступных северных районах и на континентальном шельфе, вызвало возрождение интереса к струйным насосным установкам.
Струйные насосы являются разновидностью гидроприводных насосов, и они обладают всеми достоинствами этого вида оборудования.
Благодаря своим конструктивным особенностям струйные аппараты отличаются высокой надежностью и эффективностъю, особенно в осложненных условиях эксплуатации, например, при добыче пластовой жидкости со значительным содержанием механических примесей и коррозионно-активных веществ из наклонно направленных скважин.
К преимуществам струйных насосов относят их малые габариты, большую пропускную способность и возможность стабильно отбирать пластовую жидкость с высоким содержанием свободного газа. Кроме того, проста конструкция установок, отсутствуют движущиеся детали, возможно исполнение струйного насоса в виде свободного, сбрасываемого агрегата.
В струйном насосе или инжекторе (рис. 4.78) поток откачиваемой жидкости перемещается от забоя скважины до устья скважины за счет получения энергии от потока рабочей жидкости, подаваемого поверхностным силовым насосом с устья скважины.
Рис. 4.78. Схема струйного насоса (а) и движение жидкостей в нем (б): 1 — подвод откачиваемой жидкости; 2 — подвод рабочей жидкости; 3 — входное кольцевое сопло; 4 — рабочее сопло; 5 — камера смешения; 6 — диффузор; I — невозмущенная откачиваемая жидкость; II — пограничный слой; III — невозмущенная рабочая жидкость (ядро)
Нагнетание скважинной жидкости осуществляется благодаря явлению эжекции в
рабочей камере, т.е. смешению скважинной жидкости с рабочим потоком жидкости,
обладающим большой энергией, см. рис. 4.78.
Режим работы струйного насоса характеризуется следующими параметрами: рабочий напор НР, затрачиваемый в насосе и равный разности напоров рабочего потока на входе в насос (сечение В-В) и на выходе из него (сечение С-С), полезный напор НП, создаваемый насосом и равный разности напоров подаваемой жидкости за насосом (сечение С-С) и перед ним (сечение А-А); расход рабочей жидкости Q1; полезная подача Q0. КПД струйного насоса равен отношению полезной мощности к затраченной и может достигать величины КПД = 0,2...0,35:
Такое значение КПД струйных насосов обусловлено большими потерями энергии, сопровождающими рабочий процесс: в камере смешения (на вихреобразование и гидравлическое трение жидкости о стенки камеры); в элементах насоса, подводящих и отводящих жидкость (в рабочем и кольцевом сопле и диффузоре).
Струйный насос работает следующим образом. При истечении рабочей жидкости со скоростью V1, из сопла в затопленное пространство сразу за передним срезом сопла на поверхности струи возникает область смешения. Быстрые частицы проникают в окружающий медленный поток невозмущенной жидкости, подсасываемый через кольцевой проход в камеру со скоростью Vо и передают ей энергию. Этот процесс, основанный на интенсивном вихреобразовании, происходит в непрерывно утолщающемся по длине струйном пограничном слое. Вместе с тем внутренняя область рабочей струи, а именно ее ядро и внешняя область невозмущенной подсасываемой жидкости - постоянно уменьшаются и на расстоянии L от рабочего сопла потоки рабочей и откачиваемой жидкости уже полностью перемешаны. На дальнейшем участке камеры смешения происходит только выравнивание профиля скоростей потока жидкости. Чаще всего в струйных насосах применяют цилиндрические камеры смешения, технологические простые в изготовлении и обеспечивающие относительно высокий КПД.
Для преобразования достаточно высокой скорости потока в камере смешения в давление поток направляется в диффузор.
Технические характеристики скважинного струйного насоса
Струйный насос имеет два основных элемента: сопло и диффузор, состоящий иногда из нескольких деталей (см. рис. 4.79). К соплу подается рабочая жидкость под большим давлением. Она выходит из сопла в камеру смешения со значительной кинетической энергией. Откачиваемая жидкость поступает в ту же камеру и увлекается струей рабочей жидкости в горловину диффузора.